Telegram Group & Telegram Channel
⚙️ Работает ли Adam при экстремально разреженных градиентах

Когда градиенты обновляются редко — например, в задачах обработки языка (NLP) или рекомендательных системах — может показаться, что базовый SGD будет более эффективным. Однако у Adam всё ещё есть свои преимущества.

💡 Почему Adam может быть полезен:
⭕️ Он масштабирует шаги обучения по каждому параметру отдельно, используя скользящие средние градиентов (1-го и 2-го порядка).
⭕️ Даже если градиенты редкие, Adam может обеспечить значимые апдейты по тем параметрам, которые активируются нечасто, например, для редких токенов в эмбеддингах.

⚠️ Но есть и подводные камни:
⭕️ Если параметр обновляется крайне редко, его скользящие средние могут оставаться почти нулевыми слишком долго → шаг становится почти нулевым.
⭕️ В таких условиях нужно особенно тщательно настраивать «beta1», «beta2» и «learning rate» — слишком «инерционные» настройки могут замораживать обновления навсегда.
⭕️ Примеры таких кейсов — миллионные эмбеддинг-таблицы в рекомендательных системах, где важна тонкая настройка скорости обучения для редких признаков.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
2



tg-me.com/ds_interview_lib/973
Create:
Last Update:

⚙️ Работает ли Adam при экстремально разреженных градиентах

Когда градиенты обновляются редко — например, в задачах обработки языка (NLP) или рекомендательных системах — может показаться, что базовый SGD будет более эффективным. Однако у Adam всё ещё есть свои преимущества.

💡 Почему Adam может быть полезен:
⭕️ Он масштабирует шаги обучения по каждому параметру отдельно, используя скользящие средние градиентов (1-го и 2-го порядка).
⭕️ Даже если градиенты редкие, Adam может обеспечить значимые апдейты по тем параметрам, которые активируются нечасто, например, для редких токенов в эмбеддингах.

⚠️ Но есть и подводные камни:
⭕️ Если параметр обновляется крайне редко, его скользящие средние могут оставаться почти нулевыми слишком долго → шаг становится почти нулевым.
⭕️ В таких условиях нужно особенно тщательно настраивать «beta1», «beta2» и «learning rate» — слишком «инерционные» настройки могут замораживать обновления навсегда.
⭕️ Примеры таких кейсов — миллионные эмбеддинг-таблицы в рекомендательных системах, где важна тонкая настройка скорости обучения для редких признаков.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/973

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Mining Work?

Bitcoin mining is the process of adding new transactions to the Bitcoin blockchain. It’s a tough job. People who choose to mine Bitcoin use a process called proof of work, deploying computers in a race to solve mathematical puzzles that verify transactions.To entice miners to keep racing to solve the puzzles and support the overall system, the Bitcoin code rewards miners with new Bitcoins. “This is how new coins are created” and new transactions are added to the blockchain, says Okoro.

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Библиотека собеса по Data Science | вопросы с собеседований from in


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA